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Abstract: In this study, we demonstrate a sparsity-regularized, complex, blind deconvolution
method for removing sidelobe artefacts and stochastic noise from optical coherence tomography
(OCT) images. Our method estimates the complex scattering amplitude of tissue on a line-by-line
basis by estimating and deconvolving the complex, one-dimensional axial point spread function
(PSF) from measured OCT A-line data. We also present a strategy for employing a sparsity
weighting mask to mitigate the loss of speckle brightness within tissue-containing regions caused
by the sparse deconvolution. Qualitative and quantitative analyses show that this approach
suppresses sidelobe artefacts and background noise better than traditional spectral reshaping
techniques, with negligible loss of tissue structure. The technique is particularly useful for
emerging OCT applications where OCT images contain strong specular reflections at air-tissue
boundaries that create large sidelobe artefacts.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is an imaging modality that captures depth-resolved images
with micron resolution by measuring optical interference between light back-reflected from tissue
and light in a reference arm [1]. OCT images are often affected by sidelobe artefacts caused by
spectral non-uniformity in the OCT light source and/or spectral non-linearity [2,3]. Sidelobe
artefacts generally appear as lines extending out axially from bright reflectors and can be seen
contaminating many OCT images in the published literature [4–6]. Six examples of published
images containing prominent sidelobe artefacts are presented in Fig. 1.

Because they are associated with bright reflectors, sidelobe artefacts are particularly troublesome
in emerging OCT applications such as dermatology [7], gastroenterology [7], lung imaging [8],
imaging of the oral [9] and respiratory tract mucosa [10], dental imaging [11], and imaging of
the middle ear [12,13] where highly reflective air-tissue boundaries form part of the image. In
this study we present a novel technique for suppressing these artefacts using sparsity-regularized
blind deconvolution.

Most modern OCT systems use Fourier-domain OCT (FD-OCT) techniques [20] in which a
spectral interferogram signal is collected by performing a spectrally resolved measurement of the
interference intensity between light reflected from the sample and light from a fixed reference arm.
Raster-scanned image data is collected on a line-by-line basis with one-dimensional (1D), depth-
resolved image lines called A-lines stitched together to form cross-sectional two-dimensional
(2D) or volumetric three-dimensional (3D) images.
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Fig. 1. Published image examples containing prominent sidelobe artefacts (indicated by red
arrows). (a) OCT cross-sectional image of a human finger, taken with Thorlabs Inc. Telesto
Series OCT SD-system (Image courtesy of Thorlabs Inc.) [14]. (b) OCT cross-sectional
image of an onion slice, taken with Wasatch Photonics Inc SD-system with a Cobra 800
spectrometer (Image courtesy of Wasatch Photonics Inc.) [15]. (c) OCT cross-sectional
image of human middle ear, taken with a SS-OCT system [16]. (d) OCT cross-sectional
image of oral squamous cell carcinoma, taken with Michelson Diagnostics EX1301 OCT
Microscope V1.0(Reprint permission granted by Elsevier) [17]. (e) OCT cross-sectional
image of human tooth, taken with VivoSight multiple-beam SS-OCT (Published by SPIE,
available under Creative Commons Attribution 4.0) [18]. (f) OCT cross-sectional of human
skin with an actinic keratosis with hyperkeratosis, taken with VivoSight multiple-beam
SS-OCT (Reprint permission granted by SPIE) [19].

Neglecting constant and autocorrelation terms, the measured OCT spectral interferogram
signal I(k) is given by [21,22]

I(k) = G(k)
(︃∫ ∞

−∞

α(z) cos(2knz)dz
)︃

(1)

where G(k) is the optical spectrum of the source, α(z) is the complex scattering amplitude of the
sample as a function of depth z, k = 2π/λ is the wavenumber at the source center wavelength
λ and n is the refractive index [21].The complex A-line s(z) is usually calculated via inverse
discrete Fourier transformation (DFT),

s(z) = F−1{I(k)} = F−1{G(k)} ∗ α(z) (2)

where the ∗ operator denotes convolution. We can interpret the factor F−1{G(k)} as an axial
point spread function (PSF) d(z) that blurs out the response from a point scattering target in the
A-line signal and potentially introduces sidelobe artefacts into the image. Since source spectral
imperfections can affect both magnitude and phase, d(z) is generally a complex function of depth
given by

d(z) = F−1{G(k)} (3)
so that the A-line signal s(z) has a convolutional structure given by [1]

s(z) = F−1{I(k)} = d(z) ∗ α(z) (4)
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A primary goal of OCT image processing is to obtain an accurate estimate of the scattering
amplitudes α(z) from the measured s(z). Conventionally, s(z) is taken as the estimator of α(z)
which is an effective approximation as long as the PSF is spatially localized (i.e., it approximates
a delta function). However, in practice, OCT axial PSFs are not perfectly localized. Rather
PSFs exhibit sidelobe artefacts caused by non-uniformity of the light source spectrum and/or
imperfect linearity in spatial frequency of the swept light source in swept source OCT or detector
system in spectral domain OCT [3]. In well-designed OCT systems sidelobes can be 40 dB [1] or
more lower than the main PSF peak, but when there is a bright reflector on a given line, the PSF
sidelobes can rise above the noise floor and appear as artefacts extending from the reflector in the
depth direction [1,23,24]. These sidelobes artefacts can obscure structures of diagnostic interest,
limit contrast and degrade image quality.

Traditionally, sidelobe artefacts have been addressed primarily using spectral reshaping
techniques. Spectral windowing is the simplest and most widespread such technique [1],
although more sophisticated windowing approaches have also been used [25]. However, spectral
reshaping techniques introduce trade-offs between axial resolution and sidelobe suppression [1].
Furthermore, as linear techniques they are limited in the degree of sidelobe suppression that they
can achieve and have difficulty accurately removing artefacts from sharp image features such
as tissue boundaries. Because these sidelobe artefacts arise from convolution of the scattering
amplitude with the axial PSF, if the axial PSF of an OCT system is known, deconvolution
techniques such as Lucy-Richardson [26,27], CLEAN [28], or gradual iterative subtraction (GIS)
[4] can be used to suppress the artefacts by deconvolving the axial PSF from the measured
A-lines, resulting in improved image quality. In addition to suppressing sidelobes, deconvolution
can also be used to achieve improvements to resolution and noise [26].

However, these conventional deconvolution methods require a priori knowledge of the PSF
from either numerical modeling [29] or experimental measurements [26]. Such methods therefore
have difficulty in addressing sidelobe artefacts when the PSF varies over time due to thermal
and mechanical drift [6] and they require system-specific calibration, adding complexity and
cost to the system design. Depending on the implementation, measuring the PSF may also entail
interrupting imaging, causing a decrease in frame rate.

A preferred approach, which we demonstrate for the first time in this study, is to estimate and
then deconvolve the axial PSF using only data collected as part of normal imaging, performing
so-called blind deconvolution in which the axial PSF is determined from imaging data rather
than from a separate measurement. While blind deconvolution techniques are common in
image processing [30] and have been previously been applied to improving lateral resolution
in OCT [31,32] to the best of our knowledge this is the first application of blind deconvolution
of the complex PSF from OCT A-lines to address the problem of axial sidelobe artefacts. Our
sparsity-regularized approach to blind deconvolution of OCT A-lines is model-free and requires
no modification to hardware or image sequencing. The method can be applied to already-collected
OCT data, so long as the complex A-line data or spectrogram data was retained.

2. Convolutional sparse coding

If a signal is known to have a convolutional structure – i.e., to consist of a PSF convolved with an
unknown vector – and the unknown vector is known to be sparse, i.e., to have a significant fraction
of its elements with negligibly small amplitudes, sparse representation methods can be applied to
the problem of estimating the unknown vector and the PSF from measured signals [33]. While
the sparsity of OCT images is application-specific, many OCT tissue images contain a large
fraction of non-reflective regions that would have zero intensity in an ideal image. This makes
OCT images good candidates for applying techniques that attempt to reconstruct a maximally
sparse estimate of the image consistent with the data.
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Over the last 20 years, sparse representation techniques that employ optimization over an ℓ1
norm to find the sparsest representation of a vector within an overcomplete dictionary [34] have
been widely applied across many fields of signal processing for denoising [35], compressed
sensing [36], interpolation and unsupervised machine learning [37]. The general framework
for sparse optimization can be applied to the problem of deconvolution in which a measured
signal is assumed to be formed as the convolution of a PSF, typically a short pattern that is
repeated throughout the signal, and a sparse vector containing information about where in the
signal the pattern occurs and its local amplitude [38]. In cases where the PSF is not known a
priori, dictionary learning approaches can be used to estimate the PSF from examples of the
measured data [38] which turns the sparse estimation into a blind deconvolution method. In
recent years, such approaches have been extensively developed in the fields of image processing
[39–41], analysis of neural signals [42], and in the analysis of music [43,44].

Sparse representations have previously been used in the processing of OCT images. Compressed
sensing techniques that use sparse representations have been applied to reduce the number of
spectral or spatial samples needed to form OCT images [45,46]. Sparsity-based denoising [47]
and image compression [48] techniques have also been developed for processing of B-mode OCT
images. Sparse estimation techniques have also been applied to A-line reconstruction [49,50]
to improve axial resolution. However, to our knowledge, sparsity-based processing approaches
have not previously been applied to the deconvolution of A-line OCT data. A-line deconvolution
requires the extension of sparse representation methods originally developed for real-valued
signals to allow for both a complex PSF and a complex sparse vector. It also requires methods
for ensuring that sparse representations correctly capture tissue speckle, which is an inherently
non-sparse and essential feature of OCT imaging data.

In this study we present a novel blind deconvolution method for complex OCT A-lines based
on a sparse representation that is tolerant of tissue speckle. We show that our method is effective
in simultaneously suppressing sidelobe artefacts and noise from OCT images while preserving
tissue speckle.

2.1. Convolutional sparse coding for A-line deconvolution

We approach the deconvolution of OCT A-lines by representing A-line estimation using the
convolutional sparse coding (CSC) problem, a well-studied problem in sparse estimation theory
[51]. The CSC problem is a minimization problem over the vector x(z) expressed as

argmin
x

{︃
1
2
∥s(z) − d(z) ∗ x(z)∥2

2 + λ∥x(z)∥1

}︃
(5)

where the cost function in [Eq. (5)] includes an ℓ2 term expressing the fidelity between an input
A-line signal s(z) and the convolution between an axial PSF d(z) and an estimate of the scattering
amplitude x(z) and an ℓ1 regularization term that enforces the sparsity of x(z). A regularization
parameter λ determines the relative weighting between the fidelity and sparsity terms. Larger
values of λ will promote the sparsity of the estimate x(z) at the expense of fidelity while smaller
values will favour fidelity between s(z) and d(z)∗x(z) at the expense of sparsity. An acceptable
value of λ generally needs to be determined heuristically on the class of signals being sparsely
estimated [52]. [Equation (5)] is a simplified form of the more general CSC problem which
involves a sum over multiple convolutional terms [51].

Because the CSC problem is designed to find a sparse estimate of each OCT A-line, its success
depends on the scattering amplitude α(z) of the tissue actually being sparse. In many applications,
OCT A-lines are macroscopically sparse [53], containing relatively few brightly reflecting
structures and large regions with no reflectors. However, within tissue regions, OCT images
exhibit speckle, a temporally static, spatially random texture that is not microscopically sparse
[46,54]. When sparsely regularized optimization methods are applied to speckle-containing
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images, the optimization tends to cause loss of brightness when low-intensity points within a
speckle-containing region are set to zero intensity to increase the sparsity of the estimate x(z).
Within the CSC framework, this effect can be mitigated by using a spatially varying weighting
of the ℓ1 term in the cost function whereby a larger weight is applied to the ℓ1 term in regions
that are free of structure and a smaller weight is applied in regions containing structure. This
weighted form of the CSC problem is given by [39]

argmin
x

{︃
1
2
∥s(z) − d(z)∗x(z)∥2

2 + λ∥W(z)x(z)∥1

}︃
(6)

where W(z) is a depth-dependent weighting factor applied to the ℓ1 term.

2.2. Convolutional dictionary learning for axial point spread function estimation

However, applying CSC-based optimization as a sparsity-regularized deconvolution method
still requires that the PSF d(z) be known a priori and provided as an input to the optimization
process. This means that as we have formulated it, CSC is a deconvolution method rather than
a blind deconvolution method. To develop CSC into a blind deconvolution method, the CSC
problem can be extended to also include optimization over the PSF d(z). This enhancement is
called convolutional dictionary learning (CDL) [55]. In CDL, the PSF is determined through
optimization over a set of K OCT A-lines. The CDL problem can be written as

argmin
d, xk

{︁ 1
2
∑︁K

k=1 ∥sk(z) − d(z) ∗ xk(z)∥2
2 + λ

∑︁K
k=1 ∥xk(z)∥1

}︁
s.t. ∥d(z)∥2 = 1

(7)

where the minimization runs over both a PSF d(z) and a set of K sparse A-line estimates xk(z)
such that the average error between the sparse representations d(z) ∗ xk(z) and a set of K measured
A-lines sk(z) is minimized. When applied to OCT A-lines collected over a short enough period
that the PSF remains stable, the sk(z) can consist of A-lines at different lateral locations within an
image in which case k indexes the lateral location.

The solution to this minimization problem consists of a set of sparse vectors xk(z) that are
estimates of the scattering amplitude αk(z) at each of K lateral locations and an estimate of the
axial PSF d(z), assumed to be independent of lateral location [24]. In determining d(z), the
optimization identifies axially shift-invariant patterns that are common across and within the
measured signals sk(z) while ignoring features like background noise that are spatially random
across and within A-lines. Used in this way, the CDL problem of [Eq. (7)] amounts to a
sparsity-regularized blind axial deconvolution of a complex 2D OCT image.

The CDL problem can be efficiently solved by alternately optimizing for the xk(z) with d(z)
fixed in a sparse coding step and optimizing for d(z) with xk(z) fixed in a dictionary update step
[56]. For efficient solution of both the CSC and the CDL problems, one can use (among other
options [55,57]) the alternating direction of multipliers method (ADMM) [51].

We describe the ADMM method as applied to the CDL problem below. ADMM solves the
CSC problem in a similar way, only with a fixed, known d(z) and a single measured A-line s(z)
and a single sparse vector x(z) in lieu of the ensembles of K measured A-lines sk(z) and sparse
vectors xk(z) used in CDL.

2.3. Convolution dictionary learning and convolutional sparse coding in the complex
domain

For complex-valued xk(z) and d(z), the sparse coding step in conventional CDL ADMM solvers
designed for real-valued signals must be modified to work with complex vectors as originally
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proposed in [58]. The cost function of [Eq. (7)] can be readily generalized to complex xk(z) and
d(z) by defining the ℓ1 and ℓ2 norms on complex arguments as

∥xk(z)∥1 =

N∑︂
i=1

|xk(zi)| (8)

and

∥sk(z) − d(z)∗xk(z)∥2
2 =

N∑︂
i=1

|sk(zi) − d(zi)∗xk(zi)|
2 (9)

where N is the number of pixels in the axial direction, | · | denotes the magnitude of a complex
number and sk(z), d(z) and xk(z) are all complex vectors.

In the ADMM method, the sparse coding step is solved by converting [Eq. (7)] to matrix form

argmin
X

{︃
1
2
∥DX − S∥2

2 + λ∥X∥1

}︃
(10)

where D ∈ CN×N is the matrix form of the convolution operator with d(z) such that d(z) ∗ xk(z) =
DX, S = [s1(z), . . . , sk(z), . . . , sK(z)] ∈ CN×K is a matrix formed from the measured A-lines
sk(z), and X = [x1(z), . . . , xk(z), . . . , xK(z) ] ∈ CN×K is a matrix formed from the sparse
vectors xk(z). DX is then the sparse estimate of S.

The problem is then transformed into a constrained optimization problem which is solved by
minimization of an augmented Lagrangian function containing a dual variable U ∈ CN×K and an
auxiliary variable Y ∈ CN×K . A real, positive parameter ρ governs the rate of convergence. In
this study ρ is selected using the adaptive method described in [38].

Lρ(X, Y, U) =
1
2
∥DX − S∥2

2 + λ∥Y∥1 +
ρ

2
∥X − Y + U∥2

2 (11)

The minimization process is performed according to the following steps:

2.3.1. Find X that minimizes Lρ with Y held constant

This problem can be formulated as

argmin
X

{︃
1
2
∥DX − S∥2

2 +
ρ

2
∥X − Y + U∥2

2

}︃
(12)

This minimization can be solved by setting the derivative of Lρ to zero, leading to a linear
equation system

(DHD + ρI)X = DHS + ρ(Y − U) (13)

where the H superscript denotes the Hermitian transpose. The equation system can be solved in
the frequency domain by taking the discrete Fourier transform (DFT) of both sides

(D̂HD̂ + ρI)X̂ = D̂HŜ + ρ(Ŷ − Û) (14)

where Â is the DFT of A. The solution can then be obtained by exploiting the Sherman-Morrison
formula [38].
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2.3.2. Find Y that minimizes Lρ with X held constant

This problem can be written as

argmin
Y

{︂
λ∥Y∥1 +

ρ

2
∥X − Y + U∥2

}︂
(15)

This is the step that must be modified for complex variables. When X, Y and U are real-valued,
the problem has a closed-form solution

Y = S λ
ρ
(X + U) (16)

where S(·) is the soft thresholding operator defined for real-valued A as

Sγ(A) = sign(A) ⊙ max(0, |A| − γ) (17)

where ⊙ denotes element-wise multiplication and the sign(·) and max(·) functions are applied
elementwise.

However, the sign(·) operator is not defined on complex numbers. Following [58], for A ∈ C
we define a complex soft thresholding function

CSγ(A) =
A
|A|

⊙ max(0, |A| − γ) (18)

which is equivalent to [Eq. (16)] when A is real. CSγ(A) preserves the phase of the complex
vector for |A|>γ and collapses vectors with |A| ≤ γ to the origin on the complex plane. This
function provides a closed form solution to [Eq. (15)] for complex vectors.

The dictionary update step in the ADMM CDL solution is unaffected by whether d(z), x(z) and
s(z) are complex, and therefore does not require modification. A full derivation of the ADMM
solution to the CDL problem with complex vectors using the complex soft thresholding function
can be found in [58].

In this study, we applied the CDL framework to perform blind deconvolution of complex OCT
A-lines with the goal of suppressing PSF sidelobe artefacts and noise while preserving structural
fidelity. All CDL and CSC processing used the open-source, Python-based SPORCO toolkit [59]
which, for this study, was extended to support complex-valued sparse estimation using complex
soft thresholding. SPORCO supports several solvers, but all results in this study use its CDL
ADMM solver or its CSC ADMM solver. All source code and example data for the methods
applied in this study can be accessed from our public GitHub repository [60].

3. Methods

OCT spectrogram data was collected using a previously described [12] OCT system designed
around a 1550nm akinetic swept laser source (Insight Photonics SLE-101) with a sweep bandwidth
of 40nm, axial resolution in air of 40µm, lateral resolution in air at the focus of 35µm and a
nominal sweep rate of 100 kHz. The beam was scanned laterally using a 2D MEMS mirror
(Mirrorcle A8L2.2). The system was designed for imaging of the middle ear and by design it has
lower axial and lateral resolution than typical ophthalmic OCT systems. In each image dataset,
we collected 10,240 A-lines over 102.4 ms and sampled every 20th line to form a B-mode dataset
with a lateral width of 512 pixels. We applied a standard set of A-line preprocessing steps to
the spectrogram data [1], which we will refer to as standard processing in this study. Standard
processing consisted of windowing with a Hann window to compensate for the source spectrum
non-uniformity, inverse discrete Fourier transformation (DFT) and fixed pattern noise removal by
mean subtraction [61]. The two processing methods are shown in flowchart form in Fig. 2. In
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Fig. 2. Standard and proposed OCT A-line processing methods. The proposed method uses
convolutional dictionary learning for axial PSF estimation and convolutional sparse coding
for sparse estimation of the tissue structure.

what follows, the reference images have only had these standard processing steps applied while
the deconvolved images have had these steps applied before applying the proposed processing.

Because the ℓ1 and ℓ2 terms in the cost functions of [Eq. (5)] and [Eq. (7)] scale differently
with sk, sk was normalized by its ℓ2 norm on each line prior to performing the sparse optimization
so that the same value of λ could be used across all A-lines. That is, we rescaled sk(z) to
s′k(z) = sk(z)/∥sk(z)∥2. Following convolutional sparse coding, we rescaled xk to x′k = xk∥sk(z)∥2
to restore the sparse vector signal amplitude to the level of the measured signal.

The set of normalized complex A-lines s′k(z) form the input to the CDL ADMM solver. In
each image, we learned the PSF d(z) using a subset of lines consisting of every fourth line out
of the 512 (so that K = 128) using a CDL solver with λ=0.1, and then applied a CSC solver to
obtain the sparse vector x′

k(z) of all 512 lines using the PSF from the CDL solution. Although it
is possible to learn the PSF starting from a random initial guess, we found that picking one of
the normalized A-lines as the initial guess for the PSF d(z) accelerated the dictionary learning
process while arriving at the same PSF estimate.

In what follows we refer to d(z) ∗ x′(z) as the sparse estimate of the A-line and we construct
the sparse estimate image from 20 log10∥d(z) ∗ x′

k(z)∥ where the lateral location is indexed by
k. We refer to x′(z) as the sparse vector estimate of α(z), i.e., of the complex tissue scattering
amplitudes. We form the sparse vector image as 20 log10∥x′

k(z)∥. The sparse vector image is the
final output from our proposed processing method.

Figure 3 shows an example of applying the proposed processing to an OCT image of a human
middle ear. All images in this study are displayed on the same intensity scale with a 50dB
dynamic range. Figure 3(a) shows a reference image which is affected by sidelobe artefacts
proximal to brightly reflecting middle ear structures (indicated by the red arrows) as well as
background noise. White arrows show weakly reflecting structures in the image. Figure 3(b)
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shows the learned PSF obtained by solving the CDL problem of [Eq. (7)] and highlights the
sidelobes (red arrows) that contribute the artifacts in Fig. 3(a) and Fig. 3(c). The insets highlight
a region of the image where these artefacts are sufficiently severe to completely obscure an empty
region between the tympanic annulus and tympanic bone.

Fig. 3. Example of applying the proposed processing to an OCT image of a human middle
ear. (a) reference image with only standard OCT processing applied. (b) The magnitude of
the point spread function d(z) learned over a subset of 128 lines within the 512-line image
by solving the CDL minimization problem of [Eq. (7)] with λ = 0.1. (c) the sparse estimate
image d(z) ∗ x′(z) obtained by solving the weighted CSC minimization problem of [Eq. (6)].
(d) the sparse vector image obtained from CSC with λ = 0.05 and without ℓ1 weighting
(i.e., with W(z) = 1 everywhere). (e) sparse vector image from (d) segmented into the
tissue-containing regions using Sobel filter-based edge detection (highlighted with dashed
orange overlay). (f) sparse vector image obtained by solving [Eq. (6)] with W(z) = 0.1 in
the segmented regions of (e), and W(z) = 1 elsewhere with a transition from W(z) = 0.1 to
W(z) = 1 taking place over 20 pixels in the regions distal to each segmented region. In all
images, red arrows indicate the sidelobe artefacts and white arrows highlight tissue regions
of interest.

Figure 3(c) shows an image generated from the sparse estimate d(z)∗x′(z) obtained from
solving the CSC problem with the learned PSF. The sparse regularization ℓ1 term of [Eq. (5)]
drives a substantial reduction in the background noise as x′(z) is made sparse within the empty
regions in the proximal and distal portions of the image. At the same time, the fit d(z) ∗ x′(z)
achieves high fidelity with both the tissue structure and the sidelobe artefacts. Figure 3(d) shows
an image constructed from the sparse vectors x′(z) without applying an ℓ1 weighting factor (i.e.,
with W(z) = 1) and with λ = 0.05. In this image, the sidelobe artefacts are highly suppressed
because they are contained entirely in the learned PSF d(z) and not in the sparse vectors x′(z). In
the top left quadrant of the image (highlighted in the inset), the empty region that was completely
obscured by these sidelobe artefacts in Fig. 3(a) and Fig. 3(c) is revealed in the sparse vector
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image of Fig. 3(d). However, in the tissue-containing regions, many pixels have been set to zero
intensity by the sparse optimization process to increase the sparsity of the solution, resulting in
loss of speckle brightness in the tissue regions.

This is an example of a central problem in applying sparsity-based image processing to images
that contain strong speckle, such as OCT or ultrasound images [62]. Because the speckle makes
the tissue regions non-sparse, the sparsity-based optimization will tend to set low intensity
pixels in the speckle to zero intensity in the sparse vectors x′

k(z), potentially causing a loss of
diagnostically useful information. While it would be possible to apply despeckling prior to
deconvolution, the non-linear nature of the despeckling process would destroy the convolutional
structure of the OCT image resulting in a lower fidelity deconvolution.

An alternate approach to mitigating the loss of speckle brightness is to apply a spatially
dependent weighting factor W(z) to the ℓ1 term in [Eq. (6)] that determines how heavily sparsity
will be weighted in different regions of the image. If coarse image segmentation is applied
to the image to roughly determine the extent of speckle-containing tissue regions, then this
segmentation can be used to weight sparsity less heavily in regions containing tissue as compared
to regions that do not contain tissue.

To apply this approach, we first obtained sparse vectors x′
k(z) at a fixed λ = 0.05. These sparse

vectors were nearly free of sidelobe artefacts due to the deconvolution of the PSF. However,
they also suffered from loss of speckle brightness. We then segmented the sparse vector image
for tissue structure by performing opening (dilation and erosion), median filtering and Sobel
filter-based edge detection [63]. Other common segmentation approaches would serve equally
well. The resulting segmentation contours can be seen in orange overlay in Fig. 3(e). We defined
a hard step in the weight map W(z) at the proximal interface of each structure with a value of
W(z) = 1 proximal to the interface and W(z) = 0.1 distal to the interface. Because in middle
ear OCT images, the distal boundary of structures is not well defined, a tapered weight was
used at the distal interface of each structure. From the distal interface obtained from Sobel-filter
segmentation, the weight W(z) was increased linearly over 20 pixels until it equaled 1.

Fig. 4. (a) 3D volumetric OCT image of a human middle ear processed using the standard
processing of Fig. 2 The red arrows indicate strong sidelobe artefacts arising from bright
specular reflections from the tympanic membrane. (b) The same volume processed using
the proposed processing on a slice-by-slice basis displayed with the same dynamic range.
Sidelobe artefacts are strongly suppressed. See Visualization 1.

https://doi.org/10.6084/m9.figshare.16906657
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Figure 3(f) shows the result of performing a second pass of the CSC optimization (i.e., solving
[Eq. (6)]) with this weighting mask(orange overlay seen in Fig. 3(e)) In this final image, the
artefacts remain well-suppressed, but without the loss of tissue brightness seen in Fig. 3(d).

Figure 4 shows the results of applying this process to a full volumetric dataset of a human
middle ear. Processing the data using standard processing (Fig. 4(a)) results in strong sidelobe
artefacts wherever strong, specular reflections occur (red arrows) which obscure structures behind
the artefact and clutter the image. More subtly, sidelobe artefacts introduce a haze around all
structures at air-tissue boundaries and make thin structures like the tympanic membrane appear
thicker than they are. Figure 4(b) shows the results of applying the proposed blind deconvolution
method on a frame-by-frame basis within the volume. The sidelobe artefacts are strongly
suppressed and previously obscured structures become visible. The tympanic membrane appears
thinner because it is no longer being axially smeared out by the PSF. Figure 4 is a still frame of
Visualization 1 which shows the standard-processed and deconvolved volumetric datasets being
rotated.

4. Performance assessment

A wide range of image quality metrics have been used in evaluating OCT image processing
algorithms, particularly despeckling algorithms. The structure similarity index measure (SSIM)
[64] measures similarity between a gold standard image and a processed image to determine
similarity. It is not an effective measure of the quality of deconvolved images because there is
no gold standard image to compare the sparse vector image to. Edge preservation index (EPI)
[65] measures the edge distortion and equivalent number of looks (ENL) [66] is a measure
of the smoothness of an image within a region of interest (ROI). While useful in evaluating
despeckling algorithms, these metrics are of little use in evaluating deconvolution algorithms
since deconvolution tends to decrease smoothness by making features better defined, by increasing
the apparent resolution of structures [26,28] and by increasing speckle variance [26]. As a
result, EPI and ENL scores will nearly always be worse for sparsely deconvolved images, even
when these images are perceptually better at capturing the underlying tissue reflectance than the
original image.

Given the limitations of these image quality metrics for our use case, we opted to quantitatively
assess the performance of our CDL processing pipeline using three simple metrics that have
previously been used to evaluate deconvolution algorithms for OCT and/or ultrasound imaging,
the signal-to-noise ratio (SNR) [26] the contrast (C) [67] and the generalized contrast-to-noise
ratio (gCNR) [68]. In applying these metrics, we compare the image produced using the proposed
CDL-based sparse deconvolution and a standard-processed reference image.

Signal-to-noise ratio (SNR) is defined as the ratio of mean intensity in a ROI containing
structure to the standard deviation of intensity in a background region free from structure or
sidelobe artefacts

SNR = 10log10
µh

σb
(19)

where µh and σb represent the mean intensity (in linear units) of a tissue-containing region (e.g.,
the dashed red rectangle in Fig. 8) and standard deviation of intensity in a background region
(e.g., region B in Fig. 8).

Contrast measures the ratio of mean image intensity between two ROIs within the image (e.g.,
regions H1 and H2 in Fig. 8)

C = 10log10
µr1

µr2

(20)

gCNR is a bounded metric ranging from 0 to 1 that quantifies distinguishability in terms of the
Bayesian probability of correctly assigning a given pixel to one of two defined regions using a
threshold-based binary classifier [69]. It is insensitive to changes in speckle statistics and to the

https://doi.org/10.6084/m9.figshare.16906657
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image’s dynamic range. To a good approximation, gCNR is a simple function of the overlap
integral between the greyscale intensity histograms of two ROIs. A gCNR close to unity indicates
that two ROIs can be distinguished with a high confidence and that their intensity histograms are
nearly non-overlapping while two regions with gCNR close to zero are nearly indistinguishable
and have highly overlapping intensity histograms. Because of its basis in an operational, Bayesian
definition of distinguishability, gCNR offers a valid way of assessing change to distinguishability
between two regions that is free of any assumptions about the speckle statistics [69]. gCNR is
given by

gCNR = 1 −

N−1∑︂
k=0

min(r1(xk), r2(xk)) (21)

where r1(xk) and r2(xk) are normalized log-intensity histograms on the N = 256 greyscale levels
xk of the pixels within the 50 dB display dynamic range in the regions 1 and 2.

5. Results and discussions

Figure 5 shows the results of applying the proposed processing to in vivo OCT images of a human
middle ear, the palmar aspect of a fingertip, the side aspect of a fingertip, and an onion. All images
were processed with a fixed λ = 0.1 for the CDL step, followed by the two-pass CSC processing
method shown in Fig. 2 with a value of λ selected heuristically for each image to achieve the best
perceptual image quality. The top row shows the reference images, processed using the standard
processing method. The bottom row shows the results of applying our proposed processing
method.

Fig. 5. From left to right: OCT images of a middle ear, index finger (palmar view), index
finger (side view), and onion slice. The top row shows the reference image with only standard
processing applied while the bottom row shows the corresponding sparse vector images
obtained from the proposed two-pass sparse processing shown in Fig. 2. The white arrow
indicates the sidelobe artifacts caused by the PSF.

The values of the regularization parameter λ and weighting factor W(z) are given above each
image. Qualitatively, in all images, both the sidelobe artefacts (indicated by white arrows) and the
background noise level are substantially reduced in the sparse vector images while the contrast of
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speckle and tissue boundaries is enhanced. These improvements are achieved without noticeable
loss of anatomical structure, even for structures that are weak in the reference images.

For a 512(w) × 330(d) pixel image, the CDL solver took 750 iterations and 18 seconds to
estimate the PSF from 128 A-lines on a 2019 MacBook Pro with a 2.4-GHz Intel i9-9980HK
processor and 32-GB of 2400 MHz DDR4 memory. Following dictionary learning of the PSF,
the CSC problem was solved using the learned PSF to estimate all 512 image lines on the same
computer in a total time of 1.28 seconds. Given the fundamental parallelism of line-by-line
based image deconvolution, the computation time of both CDL and CSC could be improved
substantially by using parallel processing employing graphics processing unit (GPU) acceleration
[59], although that was not explored in this study.

5.1. Selection of regularization parameter and ℓ1 weighting

Within the proposed processing method, the regularization parameter λ controls the relative
weighting of sparsity and fidelity in the CSC and CDL cost functions while the weighting factor
W(z) controls the amount of structure loss in regions identified as structure-containing during
segmentation of the sparse vector image from the first CSC pass. Heuristically, we found that
λ between 0.01 and 0.05 and W = 0.1 gave good qualitative results across the images we
investigated, but we also varied both parameters to investigate the trade-offs from using different
values in each image set.

Figure 6 shows the effects of varying λ from 10−5 to 0.40 with W(z) = 0.1 for the middle ear
image. A tissue structure ROI (red) was selected around the lenticular process of the incus and
zoomed in on in the third row. In the case where λ = 10−5 the problem of [Eq. (7)] is ill-posed.
The sparse estimate overfits the reference image and the sparse vector image is a very poor
estimate of the underlying structure. In the range λ ∈ [0.01, 0.15] the problem is well-posed,
and the solution finds a balance between fidelity and sparsity that results in a good estimate of
the underlying structure with sidelobe artefacts suppressed. At λ = 0.01, some of the sidelobe
artefacts (white arrow) and noise from the reference image are retained in the sparse vector image
whereas when λ = 0.05 the sidelobe artefact and noise have been completely removed from the
empty regions without noticeable tissue loss relative to the reference images. For λ ≥ 0.15 the
algorithm over-weights sparsity causing a loss of tissue speckle brightness (dashed red circle). In
one region (green arrow) this loss creates an apparent discontinuity in the tympanic membrane.

Figure 7 demonstrates the effect of applying various values of the weighting factors W(z) in the
segmented tissue regions with λ fixed at 0.05. Increasing W(z) in the tissue region is equivalent
to locally increasing λ and so it also causes progressive loss of signal intensity and a higher
fraction of zero intensity pixels in the tissue region indicated by the dashed red circles.

5.2. Sparse optimization performance

In Fig. 8, we identified a ROI that contained no structure (cyan, labeled B for background), a ROI
that contained no structure but that was contaminated by sidelobe artefacts from a nearby surface
(green, labeled A for artefact) and two ROIs that contain tissue speckle (red), a brightly reflecting
ROI H1 and a weakly reflecting ROI H2.

Our proposed processing improved the SNR of H2 relative to the background ROI by 2.2 dB
and improved the contrast between H2 and background ROI by 5.8 dB. The processing generally
preserved the contrast between tissue regions, with the contrast between H1 and H2 changing
by only 0.3 dB following processing. gCNR between region H2 and the background improved
modestly from 0.53 to 0.59 and gCNR between region H2 and the region contaminated by
sidelobe artefacts improved substantially from 0.28 to 0.65. However, the sparse processing also
caused a substantial decrease in gCNR between H1 and H2 from 0.80 to 0.60.

The decrease in gCNR between H1 and H2 can be explained almost entirely by an increase
in the number of pixels in H1 with greyscale intensity zero created by the sparse optimization
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Fig. 6. Sparse reconstructions of an OCT middle ear image using the same learned PSF for
various values of the regularization parameter λ. The top row shows the sparse estimate
images. The second row shows the sparse vector images with the weighting mask applied.
The red box highlights a boney tissue ROI (lenticular process of the incus) which is zoomed
in the third row. The white arrow indicates the location of sidelobe artefacts appearing in
the reference image and suppressed in the sparse images. The dashed red circle highlights a
weakly reflecting speckle region at the distal side of the ROI where a loss of structure can
be seen as the value of λ increases. The green arrow highlights a region of the tympanic
membrane that is completely eroded away in the high λ images. The bottom plots show the
A-line magnitude along a selected line in the image (orange line in the second-row images)
for each value of λ.

as can be seen in the intensity histograms in the second row of Fig. 8. Because in the sparse
representation both H1 and H2 have a large fraction of zero-intensity pixels, the histograms
have substantial overlap (i.e., orange shading) and the resulting gCNR is low. Because the
observed decrease in gCNR is due to the zero-intensity pixels, further processing steps that fill
in zero-intensity pixels with non-zero intensity (i.e., despeckling operations) can mitigate the
decrease. For example, applying a 2D median filter with a 3× 3 square kernel to the sparse vector
image fills in most of the zero-intensity pixels in the tissue regions and results in a substantial
increase in the gCNR between H1 and H2 from 0.60 to 0.87 due to the decrement in the number
of zero intensity pixels. It therefore appears that a processing sequence consisting of sparse
deconvolution followed by despeckling can result in removal of sidelobe artefacts and suppression
of background noise without compromising tissue distinguishability.

To study how the gCNR between image regions is affected by the regularization parameter
λ, we applied λ values from 10−4 to 1 to the index finger (palmar view) image of Fig. 8 and
calculated the gCNR between regions at each λ. For λ<10−4 the regularization provided by the
sparsity term in [Eq. (7)] is inadequate and the problem becomes ill-posed leading to solutions
like the one seen in the second column of Fig. 6. Starting around λ = 10−4, the problem becomes
well-posed and the sparse vector image exhibits comparable or improved distinguishability
compared to the reference image between the tissue regions, and the background and artefact
regions as measured by gCNRH1/B, gCNRH2/B, gCNRH1/A and gCNRH2/A. As λ increases, all
regions become sparser with a greater fraction of their pixels in the zero-intensity histogram bin.
The effect of this change on gCNR depends on the regions involved. gCNRH2/A is improved while
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Fig. 7. Sparse reconstructions of the OCT middle ear image of Fig. 6 for various values of
the weighting factor W at fixed λ = 0.05. Top row: reference and sparse vector images. A
ROI at the lenticular process of the incus is highlighted in the red box. Middle row: zoomed
in image of the ROI from the top images. Bottom row: sparse vector A-line estimate along
the orange line in the top row images.

gCNRH1/A and gCNRH1/H2 decrease due to the overlap of the zero-intensity bin. gCNRH2/B and
gCNRH2/A both reach their peak at around λ = 0.03. At around λ = 0.08, all gCNR values begin
to roll off as all regions begin to contain a large fraction of zero-intensity pixels, making them
less distinguishable from each other by the gCNR metric. Figure 8(d) supports the heuristic
selection of λ in the range 0.01 to 0.05 since, according to the plot, this range offers good artefact
suppression while keeping the loss of distinguishability between the two tissue regions due to
zero-intensity pixels to an acceptable level.

Traditionally, the main method of addressing sidelobe artefacts in the absence of an independent
measurement of the PSF has been through the application of spectral windowing [25] prior to
inverse discrete Fourier transformation of the spectral interferogram. While simple to implement
and computationally efficient, spectral windowing incurs a trade-off between axial resolution and
sidelobe suppression that limits its effectiveness [1].

We compared our proposed method to spectral windowing with two frequently used window
functions, the Gaussian window, and the Hann window and to processing without windowing.
Figure 9(a)-(c) show images produced with, respectively, no spectral windowing, a Gaussian
window with the same length as the raw spectrogram and a standard deviation of 10% of the
spectrogram width and a Hann window. The Gaussian window was made narrow to highlight the
degradation in axial resolution from windowing. While windowing does reduce the severity of
sidelobe artefacts relative to no windowing close to the main lobe, the proposed method, shown
in Fig. 9(d), significantly outperforms windowing, particularly for artefacts lying 20 pixels or
more from the main lobe. The inability of traditional windowing to suppress these artefacts is
also highlighted in Fig. 9(e) which shows the directly measured axial PSF from a mirror reflector,
calculated with various windows applied. While windowing successfully reduces the sidelobes
directly adjacent to the main lobes, other lobes, presumably arising from to source spectrum
imperfections and/or sweep non-linearity are not suppressed by windowing. Figure 9(f) shows
the spectrogram corresponding to the three PSFs in Fig. 9(e).
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Fig. 8. Index finger (palmar aspect) images with λ = 0.03 and W = 0.1. The performance
of the sparse processing algorithm is assessed within three classes of region of interest
(ROIs): background region B (cyan) where there is no anatomical structure, region A (green)
containing sidelobe artefacts, a brightly reflective tissue speckle region H1 (red) and a
weakly reflective tissue speckle region H2 (red). OCT 2D images are shown in the top row
and corresponding intensity histograms in the bottom two rows. (a) reference image (b)
image after proposed processing (c) image after proposed processing and median filtering
with a 3× 3 kernel (d) plot of gCNR between the ROIs as a function of the regularization
parameter λ. The dashed lines show the gCNR values calculated for the reference image and
the solid lines show gCNR for the sparse vector image as a function of λ, with W held fixed
at 0.1.

The superior artefact suppression of the proposed method allows it to achieve higher gCNR
between the weak tissue ROI H2 and sidelobe artefact ROI A, and a larger SNR improvement
between the weak tissue ROI H2 and background region B than the windowing methods without
noticeable degradation in axial resolution relative to the no-window case. The counterintuitive
drop in gCNRH2/A between Fig. 9(a) and Fig. 9(b)-(c) can be attributed to the artefact region
being brighter than H2 in Fig. 9(a) which makes the two regions more distinguishable than in
Fig. 9(b)-(c) where they have similar intensities. Figure 9(b) shows the degradation in axial
resolution that comes from the use of a narrow Gaussian window. Despite incurring a significant
degradation in axial resolution, the image of Fig. 9(b) still shows visible sidelobe artefacts
demonstrating the limitations of windowing as a sidelobe suppression technique.
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Fig. 9. Comparison of spectral windowing with CSC for sidelobe artefact suppression
for the index finger (palmar aspect) image. Windows are applied on the full 1460 sample
spectrograms then truncated to 330 pixels following inverse discrete Fourier transformation.
Separately, a mirror reflector was imaged to provide direct measurements of the PSF and
corresponding spectrogram. The insets show pixel intensities in regions H2 and A. (a) image
with no spectral windowing applied. (b) Image with Gaussian windowing (σ = 0.10 of
spectrogram width). (c) Image with Hann windowing. (d) proposed convolutional sparse
coding method with a PSF learned from the image. (e) Measured PSF from a mirror reflector
with no window, Hann window and Gaussian window (σ = 0.10 of spectrogram width)
applied. The arrows indicate features that contribute to the sidelobe artefacts and that are not
suppressed by windowing. (f) Spectrogram with no window, Hann window and Gaussian
windows applied. The plotted spectrogram is the average over 15,000 laser sweeps. The
PSFs in (e) are obtained by inverse Fourier transformation of the spectrograms in (f).

6. Conclusion

Blind deconvolution using convolutional sparse coding with dictionary learning is a promising
approach for reducing artefacts and noise and for enhancing contrast in OCT images containing
bright reflectors where contrast is limited by sidelobe artefacts from the PSF. For a fingertip
image, we demonstrated an SNR improvement of 2.2 dB and a contrast improvement of 5.8 dB
within a region affected by PSF sidelobes while only incurring a 0.3 dB contrast change between a
brightly reflecting and a weakly reflecting tissue region. The proposed processing also improved
the generalized contrast-to-noise ratio between tissue and background, and between tissue and
artefact regions, but reduced gCNR between the bright and weak tissue regions due to the
introduction of zero-intensity pixels into the speckle in the bright tissue region. We showed that
this effect can be largely mitigated by applying a despeckling step (e.g., median filtering) after
deconvolution.

We believe this to be the first demonstration of blind deconvolution of complex OCT A-lines.
Unlike previously described deconvolution methods for OCT [26–28], the improvements in
image quality we obtain do not require us to obtain an independent measurement or model-based
estimate of the PSF. Rather, a complex valued, axial PSF is learned from the complex OCT
A-lines acquired during imaging. This makes the method particularly well-suited to OCT systems
in which the PSF changes with time because dictionary learning can continuously update its
estimate of the PSF from OCT imaging data without requiring any additional calibration steps.
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The stability of the PSF will depend on the details of the source and interferometer design of
each OCT system. In our swept-source system we found that the PSF estimate could be used to
effectively suppress sidelobe artefacts over a period of tens of seconds before requiring updating.
It also makes the method applicable to previously collected image data, so long as the complex
line data or the spectrogram data was retained.

Our current CSC processing rate of 2.5 ms/line (1.28s for a 512-line image) is suitable for many
near-real-time image post-processing applications such as post-rendering for 3D visualization,
image segmentation and feature extraction. Further improvements to speed using GPU accelerated
algorithms could plausibly make the method compatible with real-time, video-rate 2D processing
for OCT images of typical size. While CDL is a slower step (18s for 128 lines) than CSC, it only
needs to be performed periodically and so it may also be compatible with real-time processing
rates with GPU acceleration. For real-time processing, a modified form of the CDL problem
that performs continuous and efficient updating of the PSF estimate called online CDL may be
applied [70].

Effective use of convolutional sparse coding requires the appropriate selection of the regular-
ization parameter λ and ℓ1 weighting factor W. While this optimization was done heuristically in
this study, performance was only weakly dependent on the exact values chosen and values of λ in
the range of 0.01 to 0.05 and W = 0.1 worked well across the various images we tested.

The removal of sidelobe artefacts and noise from OCT images containing bright reflectors is
an important step for allowing advanced visualization and analysis steps including 3D volumetric
visualization, automated segmentation, and automated diagnostics. Blind deconvolution through
convolutional sparse coding with dictionary learning could prove to be an important image
processing technique for many OCT applications.
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